Constrained Adaptive Backstepping Controller Design for Aircraft Land- ing in Wind Disturbance and Actuator Stuck
نویسندگان
چکیده
An adaptive backstepping controller is designed for the automatic landing of a fixed-wing aircraft. The backstepping control scheme is adopted by using the nonlinear six degree-of-freedom dynamics of the aircraft during the landing phase. The adaptive law is integrated along with the backstepping controller in order to estimate the aircraft modeling errors as well as the external disturbance. The dynamic constraints of the states and the actuator inputs are taken into account in the parameter adaptation. This is done to prevent an aggressive adaptation and to provide reliable control commands. Numerical simulations were performed to verify the performance of the proposed control law for the landing of the aircraft with the presence of gust and actuator stuck.
منابع مشابه
Robust Adaptive Attitude Stabilization of a Fighter Aircraft in the Presence of Input Constraints
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonli...
متن کاملDesigning and Modeling a Control System for Aircraft in the Presence of Wind Disturbance (TECHNICAL NOTE)
This paper proposes a switching adaptive control for trajectory tracking of unmanned aircraft systems. The switching adaptive control method is designed to overcome the wind disturbance and achieve a proper tracking performance for control systems. In the suggested system, the wind disturbance is regarded as a finite set of uncertainties; a controller is designed for each uncertainty, and a per...
متن کاملDiagonally Dominant Backstepping Autopilot for Aircraft with Unknown Actuator Failures and Severe Winds
This paper presents a novel formulation of the flight dynamic equations that permits a rapid solution for the design of trajectory following autopilots for nonlinear aircraft dynamic models. A robust autopilot control structure is developed based on the combination of the good features the Nonlinear Dynamic Inversion (NDI) method, Integrator Backstepping method, Time Scale separation and Contro...
متن کاملOscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)
This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...
متن کاملConstructive Non-Linear Control Design With Applications to Quad-Rotor and Fixed-Wing Aircraft
This paper recalls a non-linear constructive method, based on controlling cascades of conic-systems as it applies to the control of quad-rotor aircraft. Such a method relied on the physical model of the system to construct highperformance, modest sampling period (Ts = .02 s) and lowcomplexity digital-controllers. The control of fixed-wing aircraft, however is not nearly a straight forward task ...
متن کامل